A new approach for solving the first-order linear matrix differential equations
Authors
Abstract:
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solving the obtained coupled linear matrix equations. Numerical experiments are presented to demonstrate the applicably and efficiency of our method.
similar resources
a new approach for solving the first-order linear matrix differential equations
abstract. the main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. properties of the legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. afterwards, an iterative algorithm is examined for solvin...
full textBernoulli matrix approach for matrix differential models of first-order
The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...
full textA NEW MODIFIED HOMOTOPY PERTURBATION METHOD FOR SOLVING LINEAR SECOND-ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we tried to accelerate the rate of convergence in solving second-order Fredholm type Integro-differential equations using a new method which is based on Improved homotopy perturbation method (IHPM) and applying accelerating parameters. This method is very simple and the result is obtained very fast.
full textA new approach for solving fuzzy linear Volterra integro-differential equations
In this paper, a fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method and other numerical methods.Error ana...
full textJacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
full textA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
full textMy Resources
Journal title
volume 42 issue 2
pages 297- 314
publication date 2016-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023